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VARIOUS FORMS OF BOUNDARY CONDITIONS* 

V.A. AVAKYAN and L.P. SMIRNOV 

The method of integrating the boundary conditions in the Stokes 
approximation is used to obtain expressions for the forces of resistance 
of a spherical drop with the usual boundary conditions taking both the 
surface viscosity and changes in surface tension into account, as well 
as that of a solid sphere with boundary conditions of slippage. 

Faxen established formulas for the force of resistance and momentum acting on a solid 
sphere with boundary conditions of adhesion, for the case when the sphere moves and rotates 
in an arbitrary Stokes flow /l/ (satisfying Stokes's equations). The result was generalized 
in /2/ to the case of a spherical drop, using the Hadamard-Rybchinskii equation and the 
reciprocity theorem for the Stokes flows generalized in /3/. 

Below, a relatively simple method is presented for determining the forces acting on a 
spherical particle in an inhomogeneous Stokes flow. The perturbation fields introduced into 
the flow by the particle are described by a Lamb series /4/. Subsequent integration over the 
surface of the sphere of the boundary conditions specified on its surface enables us to 
determine the required integral characteristics in terms of which the force acting on the 
particle is expressed. The final formulas contain the integrals of the characteristics of 
the inhomogeneous flow impinging on the sphere, and represent a generalization of the Faxen 
formulas /l/. 

1. When an arbitrary Stokes flow moves past a sphere, a perturbation field described 
by a Lamb series appears by virtue of the need to satisfy the boundary conditions on the 
sphere. The force of resistance acting on the sphere is found to depend only on the stresses 
caused by the presence of the perturbation field. It can be shown that integration of the 
stresses present in the basic flow over the whole surface of the sphere gives a zero result 
for any Stokes flow. The contribution of the perturbation field will depend only on the 
function p_, (the harmonic function appearing in Lamb's solution /4/). The remaining terms 
of the Lamb expansion make no contributon to the integral expressing the force of resistance 
D, by virtue of the orthogonality of spherical functions of various orders on the sphere. 
Hence we obtain 

where a is the radius, C is the surface of the sphere, and r is the radius vector drawn from 
the centre of the sphere to a point on its surface. 

Let the sphere be situated in an incoming inhomogeneous flow vrn determined relative 
to a frame of reference attached to the sphere. Then, using the boundary conditions on the 
sphere, we can be obtain a system of equations from which the value of the integral (1.1) can 
be found. 

Let us consider a liquid sphere on whose surface the following conditions must hold: the 
total radial velocities of the external flow (index 
+i= 0 

e) and internal flow (index i) 
must vanish; the tangential stresses P',,= PiT 

+e = 0; 
are continuous; the total tangential 

velocities u,"= uyi are continuous. The velocity perturbations due to the presence of a 
spherical drop streamlined by an inhomogeneous flow vID are described by the Lamb series in 
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harmonic functions of negative order Cp_,,,, cp_,,,) for perturbations of the external flow vp 
and of positive order @,,, cpn) for perturbations of the internal flow vs. Thus the total 
velocities are expressed by the equations ue= vm+ve, UZ= Y', Integrating the boundary 
conditions formulated over the surface of the sphere, we obtain the following system of four 
linear relations connecting the four vector integrals: 

X = 5 P_zrds, Y= rp,r ds 
s 

Cl.3 

z= ptrds, 
f s 

w= +yds 

Here and henceforth all integrals will be taken over the surface of the sphere. Solving 
this system we obtain 

e 
X=---=--- 

2(1+(J) vmds- s (f-3) 

where Re and Piare the viscosities of external and internal fluid respectively,o= p'/pe, PTrn 
is the stress vector rn the incoming flow on a surface with normal r, and Pr-crn= P,'- P,", 

Prr- =(P+-.rr-')rr-'. 

Further, according to formula 11.1) the resistance in the case of an incoming Stokes 
flow has the form 

In the case of a solid particle we have c-00, and for a bubble we have a-0 * (*The 
formula for o-0 is identical with the expression obtained in the paper by Struminskii V.V. 
Smirnov L-P., Kul'bitskii YU.I., Gus'kov O.B. and Korol'kov G.A., Laws of mechanics of dis- 
perse media and two-phase systems in connection with the problems of increasing the efficiency 
of technological processes. The method of classical mechanics. Preprint 1, Moscow, Section 
on the Mechanics of Inhomogeneous Media of the Academy of Sciences of the USSR, 1979.) 

Comparing formula (1.4) with a relation from izi, we obtain 

(where the zero subscript indicates the value of the quantity in question at the origin of 
coordinates, i.e. at the centre of the sphere). We can show that they are identical, provided 
that the integral expressions in (1.4) are expanded in a Taylor series about the centre of 
the sphere, using the technique described in /5/. 

2. We shall use two more examples to show what results can be obtained using the 
proposed method with different boundary conditions, so as to demonstrate its universality. 

Let us consider a solid medium in an inhomogeneous flow with boundary conditions of 
slippage. Using a frame of reference rigidly coupled to the sphere, we obtain the following 
boundary conditions at its surface: v,=+ + vT = 0, vp f v5 I (x/P? (Ptt" + P,,), where x is the 
coefficient of slippage. 

Integrating the boundary conditions over the surface of the sphere, we obtain a system 
of equations connecting the integrals X, Y (1.21, and solving this system we obtain with help 
of formula (l.l), 

The corresponding limit values are obtained from formula (2.1) as n-+0 (adhesion) and 
as X--rrn (the boundary conditions on the surface of the bubble). 

3. We shall now consider the boundary conditions arising in the case when the surface 

tension, which varies over the surface of the drop, must be taken into account. The first three 
conditions on the surface of the drop remain unchanged: +"+ u,~=o,v,~= o,s~~+~,“= +* = p. 
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The fourth condition now includes the gradient of the surface tension y (axial symmetry 
of the incoming flow and an axisymmetric distribution of the surface tension are both assumed) 
and the surface viscosity E /6/ 

4 d? 5 aw 
P;+~pe,--P:<=--py+y-~JQr 

We will add a fifth condition expressing the equilibrium of the normal forces applied to 
the surface element of the sphere, including the normal component governed by the surface 
tension 

P,_ + P,/ - P,,’ = 2yla 

We shall assume that in the flow past a spherical drop a gravitational force field acts 
on the external and internal fluid. The field balances the resultant hydrodynamic resistance. 
The Stokes equations for the external and internal flow can be written using a frame of 
reference in which the .a axis coincides with the direction of gravity, in the form 

P'Ave=VUet $A"'= VII' (Uk = pk --'gr, k = e,~) (3.4) 

where g is the acceleration due to gravity. Integrating the boundary conditions over the 
surface of the sphere, we obtain 

where r,, is the unit vector of the tangent to the meridional cross-section of the sphere in 
the direction of increasing angle 8(8 is measured from the leading stagnation point), and 
k is the unit vector of the 2 axis. 

After eliminating from the system of equations the four unknown vectors X,Y,Z,W we 
obtain the following integral relation which must be satisfied by the surface tension of the 
drop retaining its spherical form: 

(3.2) 

For the vector X we have 

and for the homogeneous flow v" =--uk relation (3.3) takes the form 

(3.3) 

(3.4) 

When the surface tension is constant, formula (3.4) is identical with the expression for 
the resistance force obtained by Boussinesq /6/. The expression for the resistance force 
obtained in /7/ is a special case of formula (3.41 when U=O and E=O. 

In the case of a cosine dependence of the surface tension P on the angle e without 
taking into account the surface viscosity (Y=yo+acos8,E=O), 
when ?= U= -Uk, in the form 

relation (3.2) can be written, 

1+2a 
-2a(l+o) 

3P' 
s - 

3pe 4 
osie%dr+ 2.(1+17j ~=J'U+.(~+~)-~-M*IJ+ (3.5) 

~m*g($-pe)k 4 =T 2 S acos9rds 

Using the relations 
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and the fact that the vectors U and k are in opposite directions, we obtain 

(3.61 

This result shows that the difference between the weight ad the Archimedean force 
balances the reaction found from the Hadamard-Rybchinskii formula, summed with an additional 
term proportional to the coefficient e. At the same time, we find that from relation (3.31 
with %=O and condition of uniformity of the flow, 

4m’ x~-.-ak_(~+#+J 
g(u-0) 

We further have D= -3&X, and we obtain for D a value equal to the right-hand side of 
relation (3.6). Thus the result (3.6) obtained from the integral relation (3.5) agrees with 
the result of direct calculation of the resistance force. 

Let us substitute expression (3.3) into (3.21, remembering the relation D = __&-'X = 

--"l&g (pi - p") k, and put & = 0. This yields a condition imposed on the distribution of the 
surface tension for a spherical drop 

In the case of an incoming Stokes flow, and in particular when the flow is uniform, the 
first term on the right-hand side of (3.7) vanishes. When the distribution of the surface 
tension is axisymmetric, this yields 

(W 

It can be shown that any function v(6), which can be expanded in a trigonometric series 
in the sines and cosines of multiple arcs, will satisfy relation (3.8). 

We have used, as an example, the generalizations of the Faxen formula (1.4) and (2.1) to 
determine the resistance forces of two spheres, taking into account their hydrodynamic inter- 
action /%I. 

The expressions in f81 for the resistance forces of two liquid spheres contain errors. 
Below we give the correct version of formula (7) or /81 for the resistance forces of two 
liquid spheres of equal radius 

If the radii are different, then the resistances of the spheres Da,&, are given by a 
system of two equations, one of which has the form 

while the second is obtained by replacing a by b and b by a. 
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THE CONSTRUCTION OF THE CONSTANT-VELOCITY CONTOUR OF A FOUNDATION OF A 
HYDRAULIC INSTALLATION IN THE CASE OF THE FILTRATION OF TV0 

LIQUIDS Of DIFFERENT DENSITY* 

E.N. BERESLAVSKII 

An underground, constant-velocity contour is constructed for the case 
when a layer of stagnant salt water forms at a certain depth in a flow 
of water under a ayke. Results of numerical computations are presented 
and an analysis given of the influence of the fundamental defining 
parameters of a model on the form and size of the underground contour of 
a dam. Limiting cases of flows are mentioned, namely the scheme with a 
water-confining stratum /l/ and filtration around a point channel 12-41. 

1. ~~~~t~ of the p~bZe~_ Consider the steady plane flow of fresh water of density 
& under an undergroundimpermeable contour of a channel BC in the case when a layer of salt 
water of density Pr(pa>h) appears at a certain depth above an impermeable layer of salt. 
The domain of filtration z (Fig.1) is bounded from below by a boundary AD passing through a 
fixed point go= -i& where hh, is the depth of the initial surface (before the squeeze) of 
salt water. The pressure H acting on the installation and the width of the flood bed 1, whose 
left-hand end is fixed at the point B(z= -4) are assumed given, and the boundaries of the 
head and tail by AB and Cp are horizontal. The flow obeys D'Arcy's law, and the soil is 
assumed to be homogeneous and isotropic. 

Let us introduce the complex potential o= (p+iq and complex coordinate 
respectively, to xh, 

z=o+iiy 
referred, and h,, where 1~ is the soil filtration coefficient. Let us 
put cp= --N/z On AB, pi = H/2 on CD and e=Q along the water-impermeable contour of the 
flood bed EC, where Q is the filtration flow rate. 
ditions must hold at the boundary line AD: 

Then we find that the following con- 

cp - cy = coost,l@ = 0 (c = P*/& - 1) (1.i) 

The first relation of (1.1) for the segment AD follows from the assumption that salt 
water is stagnant and the pressure remains continuous during the passage across the boundary 
line /5, 6/. The condition of continuity of the potential at infinity to the left and right, 
together with condition /5, 6/ h, = (hX + h,)/2, 
the incompressibility of the liquid, 

which follows from the assumptions concerning 
determine the value of the constant in condition (l.l), 

and the difference in depth to the left and right after squeezing %-hh,=~lc. From this it 
follows that 

& = hB + H/(2c), h, = h, - Hff2c) (1.2) 
and this determines the region of flow of the ground water. 

Next it is required to construct an underground contour BC, so that the filtration rate 
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